# CAPACITANCE

Cuthbert Nyack

If 2 objects have equal and opposite charges(magnitude q) and the potential
difference between them is V, then the 2 can be said to constitute a capacitor
of capacitance C given by the following relation. Q has units of Coulomb, V of
Volt and C of Farad.
The capacitance of a capacitor depends on geometric factors and can be evaluated
analytically for some simple cases. For parallel plates of area A and separation d,
the capacitance is given by:-
For a length l of coaxial cable with inner radius a and outer radius b, the
capacitance is given by:-
When a sinusoidal current is flowing through a capacitor, it appears to
have an impedance of 1/(jwC. The 1/j means that
the voltage lags the current by 90º. Circuits in which the voltage
lags the current are often referred to as Capacitive. Because of the phase relation
between current and voltage, no power is dissipated in an ideal capacitor. Capacitors
with dielectrics may have a phase slightly different from 90º and dissipate
some power.
In the more general case the impedance is 1/sC where s is the Laplace
Variable.
When a capacitor is charged, the energy stored in the electric field is given by:-
Capacitors are used extensively in almost all kinds of electronic circuits.
Applications include coupling, bypass, smoothing, impedance matching, energy storage
etc.

*Return to main page*

*Return to page index*

COPYRIGHT © 1996 Cuthbert A. Nyack.